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We consider wavenumber selection for the periodic two-dimensional Rayleigh- 
B6nard problem on a horizontally infinite domain. The temperature difference (and 
hence the Rayleigh number) is assumed to be a slowly varying function of the 
horizontal coordinate perpendicular to the convection rolls. Under this condition 
Kramer et a,?. have shown that a unique wavenumber of convection is selected by a 
certain solvability condition if the domain contains a subcritical region. They 
performed analytic calculations for a model problem and for small-amplitude 
convection of an infinite-Prandtl-number fluid between stress-free boundaries. Their 
results are extended here to the realistic case of large-amplitude convection of a 
finite-Prandtl-number fluid between rigid boundaries. The temperature difference 
may be ‘ramped’ by changing either the temperature at the lower boundary or at 
the upper boundary, or both. It is shown that the choice has a significant effect on 
the ‘mean flow ’, but no effect on the selected wavenumber. 

1. Introduction 
A well-known attribute of natural convection in a horizontally large domain is the 

possibility of many different linearly stable patterns. This fact hampers the numerical 
prediction of the field quantities and their various functionals (for example, heat 
transfer) because these will depend, in general, on the initial conditions. Furthermore, 
the numerical approximation must contain many degrees of freedom since the 
horizontal lengthscale of the container is much larger than that of an individual 
convection cell. In  many cases computational requirements result that are not 
available or simply not practical. To overcome these difficulties, one usually assumes 
periodic solutions with some wavenumber, and then solves the governing equations 
over just one cell defmed by the periodicity. This works well, but only if the 
wavenumber is specified in advance. For Rayleigh-BQnard convection, two- 
dimensional periodic rolls are stable (between the first and second bifurcation points) 
for all wavenumbers in a fairly large range. Thus, essentially the entire problem is 
reduced to  finding an independent equation for the wavenumber. 

Early efforts in the search for such an equation concentrated on selection criteria 
that would yield a ‘ preferred’ wavenumber. It was assumed (at least implicitly) that 
this wavenumber depends only on the local physics and convection patterns. For 
instance, Malkus 6 Veronis (1958) suggested several criteria by which unique 
wavenumbers may be obtained. These included maximum heat transfer and maximum 
mean-squared temperature gradient, which were favoured as selection criteria for 
many years. Another possible criterion was given by Platzman (1965), who assumed 
the preferred wavenumber was defined by maximizing the temporal growth rate. All 
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of these criteria (along with several other proposals) overpredicted both the 
wavenumber and the heat transfer in comparison with experiments, and none 
addressed the relevant physics. A partially successful attempt to solve this problem 
more rigorously was made by McDonough (1980), who utilized the non-equilibrium 
thermodynamic theory of Glansdorff & Prigogine (1971 ). McDonough’s work repro- 
duced experimental wavenumbers, but i t  suffered from having to make a somewhat 
arbitrary assumption regarding the definition of a ‘fluctuation ’, and from the need 
to  use empirical data to define one of the parameters required by the theory. 

Since about 1980, attention has turned towards selection mechanisms that take 
into account the global physics and geometry of particular systems, and which can 
be more fully justified. Thus, locally two-dimensional rolls may appear in many 
contexts, but there is no theoretical reason to expect the selected wavenumber to be 
the same in all of them. I n  typical experiments, convection is set up in a large- 
aspect-ratio container. Without control over the initial conditions, one observes a 
disorganized pattern of locally two-dimensional rolls. These patterns contain several 
possible wavenumber selection mechanisms such as roll curvature and dislocations 
(for example, see Cross & Newel1 1984, and references therein), as well as the effect 
of the lateral boundaries. Individually, these effects are at least partially understood 
but very little progress has been made on understanding the interactions in the 
general problem. Consequently, what has been done recently, and what we intend 
to do here, is to  examine one mechanism by itself. This yields results that  are 
applicable only to  the class of problems corresponding to the particular mechanism, 
but i t  should clarify the physics involved in a rigorous and non-empirical manner. 
We submit that  this understanding is necessary before more difficult problems are 
attacked. 

For instance, Manneville & Piquemal(1983), and Buell & Catton (1986), considered 
rolls that are slightly curved and far away from lateral boundaries. The first paper 
was for small-amplitude convection near the critical point and the second for 
finite-amplitude convection up to the onset of three-dimensional flow. They showed 
that for finite Prandtl numbers a net flow or a mean pressure gradient is generated 
perpendicular to  the roll axis. A free parameter defines the magnitude of one of them 
and the type of flow that results. The two most common possibilities are (i) the net 
flow is zero, yielding axisymmetric convection, and (ii) the mean pressure gradient 
is zero, yielding the boundary of the zigzag instability. Since these effects are 
generated by the horizontal advection term of the momentum equation, wavenumber 
selection in axisymmetric convection and the zigzag instability are identical problems 
a t  infinite Prandtl number. This is probably the basis of some (incorrect) conjectures 
in the literature to the effect that  the boundary of the zigzag instability is a selection 
criterion for finite Prandtl numbers. In  both of the above cases, the governing 
equations and dependent variables are expanded in an asymptotic series with respect 
to the inverse of the radius of curvature. At zeroth order, the governing equations 
in Cartesian coordinates are recovered and are solved for the basic flowfields. Steady 
solutions a t  first order can only be obtained if a certain solvability condition, which 
depends on the above free parameter, is satisfied. Since the only other free parameter 
is the wavenumber, the solvability condition becomes the wavenumber selection 
criterion. Comparisons by Buell & Catton (1986) of the predicted wavenumber with 
axisymmetric experiments a t  many different Rayleigh and Prandtl numbers were all 
very good. 

Another selection mechanism -one that should find applicability beyond convection 
problems - is described by Kramer et al. (1982). One (or more) of the original 
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(dimensional) parameters is ‘ramped ’ slowly in the direction perpendicular to the roll 
axis so that the (non-dimensional) forcing parameter (for example, the Rayleigh 
number) increases slowly. The slow variation is quantified by introducing a small 
parameter 8, which is analogous to the inverse of the radius of curvature for the 
small-curvature problem. Again, the governing equations and dependent variables 
are expanded in terms of the small parameter, and a solvability condition is obtained. 
The difference here is that this condition contains the first derivative of the 
wavenumber with respect to the slow variable, thus an ordinary differential equation 
(ODE) for the selected wavenumber is obtained instead of an algebraic equation as 
above. If the slow variation is such that the system becomes critical at some point, 
then the ODE can be solved using the critical values as the initial condition. Kramer 
& Riecke (1985) applied these ideas to the stress-free, infinite Prandtl-number 
problem near the critical point by varying both the temperature difference and the 
plate gap, and found the initial slope of the selected wavenumber with respect to the 
Rayleigh number. One of their more interesting results was that the initial slope 
depends very strongly on which dimensional parameter was varied. 

In this paper we extend Kramer & Riecke’s analysis to the more physically 
realistic case of rigid plates and large-amplitude convection at finite Prandtl number, 
but consider only the case where the temperature difference is ramped. The resulting 
non-uniformity of the temperature boundary conditions forces a mean flow (averaged 
horizontal velocity) proportional to the slope of the ramp. A parameter is introduced 
that describes how the boundary conditions are varied in order to achieve the desired 
temperature difference, and it is shown that its value affects only the mean flow, but 
not the selection criterion. We emphasize that the variable-gap case does not present 
any conceptual difficulties, just algebraic ones ; we are considering extending the 
analysis to this problem. 

One of the main assumptions we make is the existence of two-dimensional 
transverse (that is, perpendicular to the gradient of the temperature difference) rolls. 
Intuitively, one would expect that longitudinal (parallel to the temperature difference 
gradient) rolls would be preferred since the mean flow creates a situation similar to 
convection with an imposed shear flow. However, determining the preferred mode 
is more complicated than this since the mean flow is much smaller than commonly 
encountered shear flows, and the effects of lateral boundary conditions and the initial 
condition may be just as important. Theoretical results related to the transverse-roll 
assumption are mixed. Walton (1982, 1983) analysed the stability of this problem 
near the critical point with free-free boundary conditions and various geometrical 
assumptions. He found that both transverse and longitudinal rolls can be expected, 
depending on the geometry and the lateral boundary conditions. 

The quantity of experimental results is also limited. Convection in a cylindrical 
container with an imposed radial temperature gradient was studied by Koschmieder 
( 1966). He observed axisymmetric convection (which corresponds to transverse 
rolls), but the effect of roll curvature is probably just as important as the non-uniform 
heating. A rectangular box of (non-dimensional) size 10 : 4 : 1 was used by Srulijes 
(1979) in the experiment that most closely parallels the work carried out here. He 
varied the temperature difference in the long dimension, but an aspect ratio of 10 
is not large enough for quantitative comparisons. He observed fully three-dimensional 
flow and a bifurcation to longitudinal rolls for larger slopes of the temperature- 
difference ramp. It does not follow, however, that two-dimensional transverse rolls 
could not have been obtained if a slower ramp had been used or if different conditions 
on the temperature a t  the lateral boundaries had been imposed. 
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The theory presented here can also be applied to the other types of flow observed 
by Srulijes. If the transverse dimension of the container is not large, then the flow 
is necessarily three-dimensional and the corresponding conservation equations must 
be solved. The ‘wavenumber equation’ is the same except for additional terms 
arising from derivatives in the transverse direction. This will be the subject of a 
future investigation. The asymptotic analysis can also be carried out for longitudinal 
rolls, but in this case the wavenumber equation appears at second order, and a 
second-order ODE is obtained. An additional condition on the initial slope is needed 
to make the problem well posed, but it is not known what its value should be. 
Furthermore, dislocations will inevitably appear in the flow (possibly in a non-unique 
manner), which may well make the problem intractable. 

In $2 we present the asymptotic analysis that leads to the wavenumber equation. 
A short review of the numerical method used to solve the governing equations is 
given in $3. Results for the selected wavenumber are discussed in $4, along with an 
analysis of the effects of the initial condition and the numerical approximation. A 
few final remarks are made in $5. 

2. Wavenumber selection 
In this section we derive the governing equations for the velocity and temperature 

fields, and give the asymptotic analysis which will yield the wavenumber selection 
criterion. 

The partially scaled conservation equations for the horizontal and vertical 
velocities u and w, the temperature T, and the reduced pressure p are 

u,+wz = 0, (14  

1 1 
P P 
-Ut = v2u-p,--(uuz+wu,), 

1 g a  1 p ~t = V2w-p, +- D3(T- T,) -- (UW, + WW,), 
VK P 

= V2T-uTZ- WE,  (1 4 
where we used the Boussinesq approximation and scaled lengths with the layer 
height D, time with D2/K, and pressure with p o ~ v / D 2 .  The Prandtl number is 
P = v /K.  Here, a is the coefficient of thermal expansion, g the acceleration due to 
gravity, v the kinematic viscosity, K the thermal diffusivity and po the density at 
temperature T,. Partial differentiation with respect to the horizontal and vertical 
coordinates, and time is denoted by the subscripts x, z ,  and t respectively. The 
two-dimensional Laplacian is 

The only dimensional unknown in (1) is the temperature, which is not as easily 
non-dimensionalized since we are allowing the temperature of the two plates to vary. 
The boundary conditions on T are 

T = T,(z), 

T = TC(x), 

z = 0, 

z = 1. 
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Let T H  and T, be related to each other through the parameter z,: 

TH = T , + z , A T ( x ) ,  

Tc = T, + (2,- 1 )  A T ( x ) ,  

where AT is the temperature difference TH-T, and T, is the temperature at  z = zo 
in the basic linear temperature profile, which implies that it is independent of x .  We 
now define the slow variation of AT by setting 

AT = AT,(1 + E X ) ,  E < 1, (2) 

T-T,  = ( B + z , - z ) A T , ( l + e x ) .  (3) 

u = q5xz, w = -9 22’ (4) 

where AT, is a reference quantity. A non-dimensional temperature 8 is given by 

We eliminate pressure and the continuity equation (1  a) by substituting 

and taking the vertical component of the curl(cur1) of the vector momentum equation 
(1  b, c). A simpler two-dimensional stream function could have been used here, but 
the above is the restriction to two dimensions of the general three-dimensional 
solenoidal velocity field representation (Busse 1967) end therefore its use is advant- 
ageous from the point of view of code development. The resulting equations are 

i a  

RO 

(5a) 

(5b) 

1 
p v29xxt = V49m - Rex, - 2CRO 8, - p & (9xz V29m - 9xx V2dx,) 3 

4 = v2e - 9xx - A, 8% + Ax 8, + 3 428, - 9xz(e + 2, - z ) ) ,  

where R is the local Rayleigh number 

agD3AT 
R =  , 

and R, is the Rayleigh number based on AT,. If we make the no-slip and infinite- 
conductivity-plates assumptions, the boundary conditions are 

VK 

+ 9 z = e = o ,  z = o , i .  (6) 

An examination of ( 5 )  shows that the solutions will depend on two horizontal 
lengthscales. This suggests performing a multiple-scale analysis by replacing x with 
a ‘fast’ variable 7 and a ‘slow’ variable X = E X .  Following Kramer et al. (1982), we 
define a phase variable u by R, u ( X ,  T )  = €7, where the corresponding slow timescale 
is T = e2t. Assuming that the wavenumber a varies slowly and the field variables are 
27c-periodic in 17, we have 

(7)  

This implies that 
a a  
a7 ax- - a @ ) - + € -  

a 
ax 
_ -  

Since R depends only on X, we see that it may be convenient to replace X with R 
as follows: 

a a d 
- = a(R)-+eRo- ax a7 dR‘ 
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The total derivative was used here because we can also write 
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a a da a 
aR dRaa  

_ -  ax - R,-+R,-- .  

This was used in the analytical work of Kramer et al. (1  982) and Kramer & Riecke 
(1985), but for numerical calculations (9a )  is much more efficient. One must, 
however, be careful in its implementation: higher derivatives with respect to x are 
found using the chain rule on (8), and then reformulating as in (9a). Expanding the 
derivatives in this manner yields 

a 3  a3 

a5 

where implicit dependence of a on R is assumed. The time derivative becomes 

aa a 
= ER,--.  

a 
at aT a7 
- 

( 9 4  

( 9 4  

We can write the field variables in a similar asymptotic form (suppressing the explicit 
dependencies on the vertical coordinate and time), 

$(x) = $(')(q, X )  +do #')(7, X) + . . . , 
0(x) = 0(0)(7, X )  + 6R0 0 y q ,  X )  + . . . . 

Substituting (9), (lo),  and (11)  into (5), the governing equations at each order in e 
can be derived. Since e always appears multiplied by R,, we set R, = 1 with no loss 
of generality. Also, i t  is convenient to  set a(a/al;r) = a/ax (of course, this can be done 
only after the equations are developed). At order EO, we have the Boussinesq 
equations : 

This system determines the periodic solutions corresponding to  the local value of R, 
but the wavenumber remains undetermined. Before the equations a t  order are 
given, we note that the non-uniformity of the temperature boundary conditions will 
create a horizontal mean flow for both subcritical and supercritical Rayleigh 
numbers. However, a mean flow cannot be contained in the ansatz (4), so we will need 
a separate equation for it.  This is obtained by substituting (3), (9), and (1 1 )  into (1 b, c) ,  
eliminating the pressure between (1  b) and ( 1  c ) ,  and then horizontally averaging the 
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result. The mean flow corresponding to the series ( l l a )  is denoted by e?i(z). Noting 
that the time derivatives are identically zero a t  this order, the resulting equation is 

- l a  1 d a  
u,,, = (tFo) +Re$))  + z, - z +- - (- - [($!$)2 - 4(4g')2 - 4$')4$$),] 

Paz a d R  

where the angled brackets denote the horizontal average over a wavelength. 
Integrating once yields 

U,, = Joz ( Oco) + RO$)) dc + z(zo - 42) 

where is the constant of integration, which contains the mean horizontal pressure 
gradient. The mean flow must also satisfy the no-slip boundary conditions: 
E ( 0 )  = U( 1)  = 0. The specific problem (or class of problems) determines j i .  However, 
the most common physical situation is convection in a finite container with 
non-porous lateral walls. Thus, is detemined by requiring the net flow, 

Jol U(%) dz, 

to be zero. The easiest way to do this is to first let E be the solution to (14) with p = 0, 

(15a) 
so that 

The constant p is then determined by global conservation of mass, which yields 

- u = V+&z(z- 1).  

Referring to (13), we note that the term (eco)+ Re$)) is everywhere of the opposite 
sign as the odd component of zo-z. In addition it turns out that the former is slightly 
larger in magnitude than the latter, so that the two terms nearly cancel. The even 
part of the forcing is not affected by convection since i t  is completely contained 
within the term zo-z. (Here, 'odd' and 'even' refer to the parity of a function with 
respect to the mid-plane, z = 4.) The terms multiplied by 1/P have the same parity 
as the temperature terms, but are considerably smaller. 

After multiplying through by the wavenumber, the equations at order E~ can be 

where uCz) = (#Q, B(z))T, and a superscript T denotes the transpose. M is a nonlinear 
vector operator and L is the matrix operator obtained by lincarizing (12) around Uo). 
The elements of M and L are written out in the Appendix. Steady solutions exist 
only if the right-hand side of (16) vanishes. That is, u') must satisfy 

1 
L[UC')] = --MIUco)]. a (17) 
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(U*, M[ VO)]) = 0, 

is fulfilled, where U* belongs to the null space of the adjoint of L: 

L*[U*] = 0. 

(V,L[wI)  = (L*[vl> w), 

The adjoint is defined by 

where V and Ware arbitrary functions satisfying the boundary conditions, and the 
inner product is the same as the one in (18). Here, we use the natural inner product 
for functions defined in Cartesian coordinates, 

( V,  W) = s' ( V. w> dz. 

The elements of the adjoint operator L* are given in the Appendix. Equation (18) 
constitutes our selection criterion since the wavenumber (and its derivative) is the 
only quantity that can be varied so that the solvability condition is satisfied. Writing 
it as a first-order differential equation for the wavenumber, we have 

0 

da 
F[a, U*, U 0 ) l d R + G [ a ,  U*, U(O),u]a = 0, 

where the functionals F and G follow directly from (18) and (A 1) .  As an aside, we 
note that if the phase is unsteady and U* is properly normalized, the above can be 
written 

Thus, the phase behaves diffusively with a 'longitudinal ' diffusion coefficient F 
(Kramer et al. 1982) and convection (or 'drift') velocity -G.  The former quantity 
is a property of the rolls while the latter contains all the information about the 
inhomogeneity (variable temperature, gap, etc.). 

A single initial condition is needed to make (20) well posed. Usually, we take the 
values a t  the critical point : 

a = a,, R = R,, (22) 
where 

a, = 3.11632, R, = 1707.762, 

but in general we simply have a = ao, R = RO. The wavenumber equation (20) is 
solved by an implicit mid-point scheme. All variables are defined on a discrete mesh 
in Rayleigh number space, 

Rn = Ro+nAR, 

where n (not necessarily an integer) is the step number and AR is the step size. At 
the nth step, derivatives with respect to R are evaluated with centred differences with 
respect to step n-;, for example, 

All other quantities are evaluated at  the mid-point : (Rn-:, an-+), where an-+ is defined 
as +(an +an-l) .  Thus, at each step (20) becomes a nonlinear algebraic equation for 
an, which is iteratively solved by the fixed-point or the secant method until the 
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difference between two consecutive iterations is less than a given tolerance 6’. 
Because of the centred nature of all approximations, we expect that the predicted 
wavenumber will be second-order accurate in AR. 

We summarize the above in the form of an algorithm for determining the selected 
wavenumber as a function of the Rayleigh number : 

1 .  Input RO, uO, zo, and the numerical parameters. 
2. Solve for U(O)(R0,ao) and set n = 0. 
3.  Set n = n + l ,  k = 0, and guess (or extrapolate from lower n )  a t ,  where the 

subscript is the iteration counter. 
4. Solve for U(O)(R”-t,a$), U(O)(R”, a,”), U*(Rn*, a,”-+), U, and U(l)(Rn-4, a:+), 

where the adjoint solution is based on the first solution, and the mean flow and 
perturbation solutions depend on the first two plus U(0)(Rn-l, a”-’). Also, if P 
is finite, ;II and U ( l )  are coupled and must be solved together, otherwise U(l) is 
not needed at all. 

using 
5. Evaluate the residual r, = F‘(a~-uan-l ) /AR + G, a t 4  of (20), and calculate 

(a) the fixed-point method for k = 0: a: = U ~ - ~ - A R @ G ~ / & ,  
(b )  the secant method for k > 0 : = a,” - r,(a,” - a,”-J/(r, - rk-’).  

6. If l~:+~-aZl > 6’AR, set k = k+ 1 and repeat steps 4 and 5. 
7. Set an = a:+l. 
8. Repeat steps 3 to 7 until desired Rayleigh number is reached. 
This procedure is straightforward and numerically well behaved. The exception is 

near the critical point, where there are terms in the functional G (such as dU(O)/dR) 
that are O((R/R, - l ) - t )  or O(1). Since F is O((R/R, - l ) t ) ,  one would conclude that 
(20) is singular. However, given exact solutions these ‘large’ terms cancel out, 
leaving a well-posed problem (see Kramer & Riecke 1985 for an analysis of the 
free-free case). This is not quite true for the numerical work here; the large terms 
multiplied by the discretization error for the R derivatives do not cancel, but leave 
an error term that is of the same order of magnitude as F. Thus everything is finite, 
but an O(1) error is introduced (only) at the first step if the critical values are used 
as the initial condition. To overcome this, we start the calculations one or two steps 
above the critical point and choose the initial condition so that a ‘backward’ 
extrapolation goes through the critical point. This starting procedure works quite 
well, and it will be shown later that the results a t  higher R are insensitive to the small 
errors caused by it. 

On the other hand, the asymptotic expansions used here are non-uniform as R 
approaches the critical point (a different expansion is needed because U remains finite 
while U ( O )  goes to zero). Therefore, the wavenumber equation (20) may not be valid 
at the critical point even though it is non-singular. Starting at any supercritical R 
obviates this difficulty since a sufficiently small E can always be found to make the 
expansions uniform. 

3. Solution of the governing equations 
Because of the requirement of speed and accuracy, it is worthwhile to review the 

numerical method used to solve the governing equations (12), (14), (17) and (19). The 
approach is the same as used by Buell & Catton (1986) and is similar to the methods 
used by McDonough & Catton (1982) for the Rayleigh-B6nard problem and by 
Meyer-Spasche & Keller (1978, 1980) for the rotating Taylor-Couette problem. All 
are mixed finite-difference Galerkin procedures where the Galerkin method is applied 
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in the horizontal (periodic) direction and finite differencing in the vertical (non- 
periodic) direction. We improve on the latter methods by implementing compact 
fourth-order accurate finite-difference schemes instead of standard centred second- 
order accurate differencing. Details of the method and most of the numerical analytic 
tests will be given elsewhere. 

is 
To illustrate the method, we apply it to (12). Suppressing superscripts, the solution 
approximated by 

K 

K 

i-0 
8 x Z 8&) C O S ~ ~  X, 

where ai = iu and the boundary conditions on all of the #$, ei are the same as on # , 8 .  
Here we take advantage of the periodicity and symmetry properties of the solution 
(Clever & Busse 1974) in selecting the cos at x dependencies, while finite-difference 
methods are more suitable for the non-periodic boundary conditions on the upper 
and lower surfaces. Equations (24a) and (24b) are substituted into (12) and the 
Galerkin method applied in the horizontal direction only : we multiply by cos uk x and 
integrate over a wavelength. Newton’s method is applied next, but only with respect 
to $k and ek. Compared to a ‘full’ Newton’s method, this reduces the amount of 
linear algebra that needs to be done by at least two orders of magnitude. Unfortu- 
nately, it also reduces the expected order of convergence of the iterations from 
quadratic to linear. It turns out (Buell & Catton 1986) that the former effect 
dominates the latter so that a large saving in computer time (as well as storage) is 
obtained. 

The above procedure yields a coupled system of 2K+1 ordinary differential 
equations for the modal functions #i and Oi. These are solved one a t  a time 
by operator compact implicit (OCI) finite differencing on a uniform grid 
z, = h ( j - l ) , j  = 1,  ..., J , h  = l /(J-l) ,  where J is the number of grid points. OCI 
formulae are given by Stepleman (1976) for general second-order equations (here, 
these originate from (12b)),  and by Buell(1986) for fourth-order equations (originating 
from (12a)). Both are fourth-order accurate with respect to the mesh spacing h, as 
compared to second-order accuracy for centred differencing. 

Convergence tests demonstrating the accuracy of the numerical solution of (12) are 
given by Buell & Catton (1986). The modifications to the method necessary for the 
solution of the perturbation equations (17) and the adjoint equations (19) are also 
discussed. Convergence of the selected wavenumber with respect to the numerical 
parameters is demonstrated in the next section since the absolute accuracy of the 
calculated wavenumber cannot be predicted from the accuracy of the field solutions. 

4. Results and discussion 
In this section we shall present the main contribution of this work: the selected 

wavenumber as a function of the Rayleigh and Prandtl numbers. But first we show 
that the parameter zo does not affect the wavenumber. From (14) we see that the 
difference between U with zo $: 4, and U with zo = is 

(25) 
- 
U ( Z , Z o ) - U ( Z , $ )  = f ( Z , - t ) Z ( Z - t ) ( z -  I ) ,  
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which is an odd function and independent of convection. Typical terms that include 
u in the functional G are proportional to 
- 

r i  P1 

plus others that include the second derivative (which does not change the parity) of 
$t or U. One finds from examining the forms of (12) and (A 3) that the modal functions 
U, and have the same parity and therefore the functions multiplying ;li are always 
even. It follows that the odd component of ii does not contribute to integrals like 
the ones in (26) or (20). The only other place that zo appears is in the term zo-z in 
(A l b )  which multiplies an odd function and, again, zo does not affect G. In  
performing the computations that follow we used zo = i, unless otherwise noted. 

We mentioned earlier a special starting procedure that is needed to solve (20) so 
that large errors are avoided. In order to implement it, we require ao(Ro) for some 
RO slightly greater than R,. Thus the initial slope of a with respect to R (denoted 
by a') must be determined. An estimate of this slope is obtained by selecting 
(iteratively) ao such that the equality in 

is satisfied. The accuracy of this expression is determined by reducing Ro and AR 
systematically. Considerable effort can be saved by taking AR to be O((Ro- R,)2),  
which replaces two independent sequences with one. Note that it is not sufficient for 
AR to be proportional to RO- R, because in this case the errors in the R derivatives 
of U0) may become O(1). The numerical parameters used were J = 37, K = 4, 
S = lop8, and s' = Additional testsensured that the errors in the approximations 
these parameters represent are much smaller than the errors in (27). The extrapolation 
of a'(Ro) to Ro = R, gives a more accurate estimate of a', and it shows that the 
convergence rate of this procedure is greater than the linear rate one would expect. 
In table 1 extrapolated values of a' are given for several Prandtl numbers. Clearly, 
a' decreases monotonically with increasing P, as opposed to axisymmetric convection 
where a' decreases then increases slightly with P. These values are useful beyond 
their employment in (27) ; a' is accessible at the critical point to analytic calculations 
(similar to those by Manneville & Piquemal 1983 for the axisymmetric case) and so 
a valuable comparison is possible. Each number in the tables presented here is 
accurate up to the penultimate significant figure shown. The last figure is an estimate, 
the accuracy of which can only be determined by more extensive tests. 

We now consider the numerical error in solving the wavenumber equation up to 
'large ' Rayleigh numbers. The convergence behaviour of the functionals F and G 
(and thus the wavenumber) with respect to the numerical parameters J, K ,  and 6 
is very similar to that of the Nusselt number (Buell & Catton 1986). Therefore, only 
an abridged version of these tests is given in table 2 from which the absolute accuracy 
of the calculated wavenumbers can be ascertained. Here, we integrated (20) up to 
R = 12000 starting from R" = 3000, a0 = 3.0448, and using P = 7.0 and AR = 500. 
Iteration tolerance$ for all large R calculations were 8 = 6' = or smaller. The 
initial condition was obtained by performing the same procedure but starting just 
above R,. It is apparent that the numerical error in the calculation of the 
wavenumber is very small. Less obvious is the effect of AR on the calculated 
wavenumber. Table 3 presents results for the same problem at several Rayleigh 
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P 0.025 0.3 0.5 0.7 1 .o 1.5 3.0 7.0 03 

~ ‘ ~ 1 0 ’  485.0 33.3 12.2 5.54 1.62 -0.76 -2.55 -3.30 -3.74 

TABLE 1. Initial slope a’ as a function of the Prandtl number. 

J K U 

9 5 2.4462 
13 9 2.4385 
19 13 2.4402 

TABLE 2. The selected wavenumber at R = 12000 aa a function of number of grid points and 
modes. P = 7, RO = 3000, u0 = 3.0448, AR = 500. 

R AR=1000 AR=500 AR=250 

6000 2.8040 2.8054 2.8058 
9000 2.5972 2.5991 2.5996 

12000 2.4368 2.4385 2.4389 

TABLE 3. Convergence of the selected wavenumber with Rayleigh number step size. P = 7, 
J = 13, K = 9, Ro = 3000, u0 = 3.0448. 

numbers for different values of AR with J = 13 and K = 9. We see that, as expected, 
the error is approximately second order in AR. In  addition, the absolute error is quite 
small and is essentially independent of R. The latter observation means that errors 
do not accumulate with each step, which is an unusual property of a numerical 
solution of an initial-value problem. 

This behaviour is at least partially explained by figure 1, where the selected 
wavenumber for P = co is plotted using several different initial conditions. The 
middle line is for the case when the initial condition is the critical point. The 
converging nature of the solutions indicates that errors due to numerical approxim- 
ations or errors in the initial condition tend to be damped. This figure also shows that 
if the system does not become critical at any point, then a unique wavenumber will 
not necessarily be selected. However, the band of allowable wavenumbers at  high R 
will be small compared to the band of stable wavenumbers corresponding to the 
lowest Rayleigh number in the system. For instance, we see that a given band of 
wavenumbers a t  R = 3000 ‘maps’ to one about 17 times smaller at  R = 12000. 

The selected wavenumber as a function of the Rayleigh and Prandtl numbers is 
shown in figure 2. The qualitative behaviour of the initial slope of the wavenumber 
is reproduced a t  higher Rayleigh numbers in that the wavenumber is a monotonic 
decreasing function of P for all R. This function depends weakly on P when P > 3, 
but is sensitive to P when P < 3. The same dependence was also seen for wavenumber 
selection in axisymmetric convection (Buell & Catton 1986), and in fact the results 
are similar for the two cases (but not quite the same, differences are on the order of 
0.2). There are no experiments based on using a variable temperature difference to 
measure wavenumbers known to the authors. As mentioned earlier, the experiments 
of Srulijes are the best available, but the aspect ratio he used (10) was not large 
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FIGURE 1.  Solution of the wavenumber equation for infinite Prandtl number with different 
initial conditions (dots). The middle curve starts at the critical point. 

enough for quantitative measurements of the wavenumber. Comparisons with other 
experiments are not really justified since different selection mechanisms will be in 
effect. However, the results of Croquette & Pocheau (1984) are less than 10 yo smaller 
than the large P results presented here. Their experiments were performed in a 
horizontally-homogeneous large-aspect-ratio rectangular cell using fluids with 
P =  14 and 70. The selection mechanisms they investigated were based on the 
movement of a single dislocation and grain boundaries. Both gave very similar 
results. Thus for large Prandtl numbers, the selected wavenumber appears to be 
nearly independent of the selection mechanism. On the other hand, for small P the 
opposite is true. For instance, there is a very large difference between the boundary 
of the zigzag instability and axisymmetric convection. The former is not a selection 
mechanism but the mean flow is the only attribute distinguishing the two. Thus the 
wavenumber is very sensitive to 'large-scale' flows, which tend to be relatively big 
for small P. This is shown in figure 3, where the mean flow is plotted for two pairs 
of (supercritical) Rayleigh and Prandtl numbers, and for subcritical flow. We used 
zo = t ,  which produces profiles that are symmetric around the mid-layer. Profiles for 
other values of z,, are obtained by adding the right-hand side of (25) to those given. 
For subcritical Rayleigh numbers, the mean flow is given by a quartic polynomial 
and is independent of R and P. For supercritical convection, U depends strongly on 
P but its amplitude decreases only slightly with increasing R .  At the critical point 
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FIGURE 2. 
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FIGURE 3. The dependence of the mean flow on the vertical coordinate with zo = 4 and 
(a )  R < R,; ( b )  R = 7000, P = m, a = 2.696; ( c )  R = 2000, P = 0.7, a = 3.131. 
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FIGURE 4. Streamlines (a, b) ,  and isotherms (c, d )  for R = 7000, P = 00 and 2, = 0. The first and 
third plots are for uniform boundary conditions ( E  = 0), and the second and fourth for E = 0.1 and 
R, = 3000. where AT increases to the right. The difference in contour values is 1.0 in (a, b )  and 0.1 
in ( c , d ) .  

the mean flow changes discontinuously with R. This is due directly to the behaviour 
of (8 , )  at R,, and is related to the non-uniformity of the expansions at that point. 

In figure 4, streamlines (a, b)  and isotherms ( c ,  d) are plotted for the case R = 7000, 
P = 00, at the selected wavenumber, a = 2.696. Streamlines are defined by contours 
of 

4 f+€RO(~~)+~ , 'U(5 )d5) .  

The first and third plots are for uniform boundary conditions ( E  = 0), which are to 
be compared to the second and fourth plots respectively, where E = 0.1, R, = 3000 
and zo = 0 are assumed. In figure 4 (b) we see that the convection roll that turns with 
the mean flow (the one on the left) is larger than the other, as expected. However, 
the strength of this roll is only slightly larger, which is not expected. It turns out 
that the perturbation field UC') almost cancels the effect of the mean flow in 
strengthening the left-hand roll and weakening the right-hand roll, but complements 
it in increasing the difference in size of the two rolls. 

5. Conclusions 
We have presented here the derivation of an ordinary differential equation 

governing wavenumber selection when the temperature boundary conditions are 
slowly varying in one direction. Solutions were given for Rayleigh numbers up to the 
vicinity of the point where straight convection rolls become unstable to three- 
dimensional or time-dependent disturbances, and for several Prandtl numbers. It 
was found that the selected wavenumber increases monotonically with decreasing P 
for a given R, and that it increases with R when P < 0.7. These trends were also found 
for axisymmetric convection (Buell & Catton 1986), but are opposite to the ones 
generally seen in uncontrolled experiments with uniform boundary conditions. This 
is due to the fact that in the latter case, selection mechanisms different from the one 
considered here will be in effect, and that these mechanisms are, in general, very 
sensitive to the Prandtl number (especially when it is GO(1)). 
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Kramer & Riecke (1985) showed that the selected wavenumber is unique if the 
temperature ramp connects to  a subcritical region. This was assumed implicitly in 
most of the results when we took the initial condition to be the critical point. 
Calculations were also performed with other initial conditions to  show that even if 
the convection layer does not contain the critical point, the resulting band of 
wavenumbers at high Rayleigh numbers will be very small. 

The authors acknowledge useful discussions with Professors F. H. Busse, M. C. 
Cross and R. E .  Kelly. Suggestions from the referees also helped to  improve the 
presentation. The research reported here was partly supported by the National 
Science Foundation under Grant No. MEA 81-05542, and by the Department of 
Energy for the use of the Cray XMP a t  the National MFE Computer Center (Lawrence 
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